Lipopolysaccharide and Ceramide Use Divergent Signaling Pathways to Induce Cell Death in Murine Macrophages

Author:

Lakics Viktor1,Vogel Stefanie N.1

Affiliation:

1. Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814

Abstract

AbstractCeramide is a well-known apoptotic agent that has been implicated in LPS signaling. Therefore, we examined whether LPS-induced macrophage cytotoxicity is mediated by mimicking ceramide. Both LPS and the cell-permeable ceramide analogue, C2 ceramide, induced significant cell death in IFN-γ-activated, thioglycollate-elicited peritoneal macrophages after 48 and 24 h, respectively. Ceramide-induced cell death was neither accompanied by DNA fragmentation nor phosphatidyl serine externalization, characteristics of apoptosis. In contrast, LPS induced a significant fraction of cells to undergo apoptosis, as demonstrated by DNA fragmentation and quantified by DNA analysis on FACS, yet the majority of the cells died in a necrotic fashion. C3H/HeJ Lpsd macrophages were resistant to LPS-induced cell death and less sensitive to C2 ceramide-evoked cytotoxicity, when compared with Lpsn macrophages. C2 ceramide plus IFN-γ failed to activate release of nitric oxide (NO·), whereas LPS-induced cell death, but not C2-induced cytotoxicity, was blocked by an inhibitor of inducible NO· synthase (iNOS), NG-monomethyl-l-arginine. Macrophages from IFN regulatory factor-1 (−/−) mice shown previously to respond marginally to LPS plus IFN-γ to express iNOS mRNA and NO·, were refractory to LPS plus IFN-γ-induced cytotoxicity and apoptosis. These data suggest that although LPS may mimic certain ceramide effects, signal transduction events that lead to cytotoxicity, as well as the downstream mediators, diverge.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3