Gallium Arsenide Modulates Proteolytic Cathepsin Activities and Antigen Processing by Macrophages

Author:

Lewis2 Timothy A.1,Hartmann Constance B.1,McCoy Kathleen L.1

Affiliation:

1. Department of Microbiology and Immunology, Virginia Commonwealth University/Medical College of Virginia, Richmond, VA 23298

Abstract

AbstractGallium arsenide (GaAs) is a semiconductor utilized in the electronics industry. Chemical exposure of animals causes a local inflammatory reaction, but systemic immunosuppression. Mice were administered i.p. 200 mg/kg GaAs crystals or latex beads, or vehicle. Five days after exposure, splenic macrophages were defective, whereas thioglycolate-elicited peritoneal macrophages (PEC) were more efficient in processing the Ag, pigeon cytochrome c, than vehicle control macrophages. Various aspects of the MHC class II Ag-processing pathway were examined. Both macrophage populations normally presented a peptide fragment to the CD4+ T cells. Surface MHC class II expression on the PEC was up-regulated, but splenic cells had normal MHC class II expression. PEC had elevated levels of glutathione and cysteine, major physiologic reducing thiols. However, the cysteine content of splenic macrophages was diminished. Proteolytic activities of aspartyl cathepsin D, and thiol cathepsins B and L were decreased significantly in splenic macrophages. On the other hand, thiol cathepsin activities were increased selectively in PEC. Latex bead-exposed PEC were not more potent APC, and their thiol cathepsin activities were unchanged, indicating that phagocytosis and nonspecific irritation were not responsible. The phenotype of PEC directly exposed to GaAs mirrored cytokine-activated macrophages, in contrast to splenic macrophages from a distant site. Therefore, GaAs exposure differentially modulated cathepsin activities in splenic macrophages and PEC, which correlated with their Ag-processing efficiency. Perhaps such distinct alterations may contribute to the local inflammation and systemic immunotoxicity caused by chemical exposure.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3