Cytokine production by human fetal microglia and astrocytes. Differential induction by lipopolysaccharide and IL-1 beta.

Author:

Lee S C1,Liu W1,Dickson D W1,Brosnan C F1,Berman J W1

Affiliation:

1. Department of Pathology (Neuropathology), Albert Einstein College of Medicine, Bronx, NY 10461.

Abstract

Abstract As part of a study on the role of cytokines in central nervous system development and dysfunction, we determined the pattern of cytokine production in highly purified cultures of microglia and astrocytes isolated from second-trimester human fetal brains. Levels of TNF-alpha, IL-1 beta, and IL-6 mRNA and protein were determined by Northern blot analysis and ELISA before and after stimulation with LPS, TNF-alpha, or IL-1 beta. In microglia, LPS induced mRNA for all three cytokines. High protein levels of IL-6 and TNF-alpha were also found in the medium, whereas IL-1 beta protein was mostly cell associated. IL-1 beta also induced message for all three cytokines, in the rank order of IL-1 beta > IL-6 > TNF-alpha. TNF-alpha induced mRNA and protein for IL-1 beta but not for TNF-alpha or IL-6. In contrast, LPS failed to stimulate either mRNA or protein expression for any of the three cytokines in astrocytes. On the other hand, IL-1 beta provided a strong stimulus for astrocytes. IL-1 beta induced mRNA and protein for both TNF-alpha and IL-6, but the kinetics of the response differed for the two cytokines. TNF-alpha mRNA and protein levels peaked early (at 4 h and 16 h, respectively) and were undetectable by 72 h, whereas IL-6 mRNA peaked later (at 16 h) and protein levels continued to accumulate in the medium through 72 h. IL-1 beta did not induce IL-1 beta mRNA or protein in astrocytes. TNF-alpha did not induce expression of any of the cytokines in astrocytes. In conclusion, our results demonstrate that cytokine production can be induced in human fetal microglia and astrocytes but that the stimuli for induction differed significantly for the two cell types. Whereas LPS was a potent stimulus for microglia, astrocytes primarily responded to IL-1 beta. The data further suggest that microglia may be key regulators of astrocyte response, working primarily through the expression of cell-associated IL-1 beta.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3