RNF186/EPHB2 Axis Is Essential in Regulating TNF Signaling for Colorectal Tumorigenesis in Colorectal Epithelial Cells

Author:

Zhang Huazhi1,Cui Zhihui1,Pan Ting23,Hu Huijun1ORCID,He Ruirui23,Yi Ming23,Sun Wanwei1,Gao Ru1,Wang Heping1ORCID,Ma Xiaojian1,Peng Qianwen1,Feng Xiong1,Liang Shuyan4,Du Yanyun23,Wang Chenhui23

Affiliation:

1. *Key Laboratory of Molecular Biophysics of the Ministry of Education, National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China;

2. †The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China;

3. ‡Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China; and

4. §Wuhan Biobank Co., Ltd., Wuhan, China

Abstract

Abstract The receptor tyrosine kinase EPHB2 (EPH receptor B2) is highly expressed in many human cancer types, especially in gastrointestinal cancers, such as colorectal cancer. Several coding mutations of the EPHB2 gene have been identified in many cancer types, suggesting that EPHB2 plays a critical role in carcinogenesis. However, the exact functional mechanism of EPHB2 in carcinogenesis remains unknown. In this study, we find that EPHB2 is required for TNF-induced signaling activation and proinflammatory cytokine production in colorectal epithelial cells. Mechanistically, after TNF stimulation, EPHB2 is ubiquitinated by its E3 ligase RNF186. Then, ubiquitinated EPHB2 recruits and further phosphorylates TAB2 at nine tyrosine sites, which is a critical step for the binding between TAB2 and TAK1. Due to defects in TNF signaling in RNF186-knockout colorectal epithelial cells, the phenotype of colitis-propelled colorectal cancer model in RNF186-knockout mice is significantly reduced compared with that in wild-type control mice. Moreover, we find that a genetic mutation in EPHB2 identified in a family with colorectal cancer is a gain-of-function mutation that promoted TNF signaling activation compared with wild-type EPHB2. We provide evidence that the EPHB2-RNF186-TAB2-TAK1 signaling cascade plays an essential role in TNF-mediated signal transduction in colorectal epithelial cells and the carcinogenesis of colorectal cancer, which may provide potential targets for the treatment of colorectal cancer.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3