Affiliation:
1. *Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110;
2. †Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198; and
3. ‡Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
Abstract
AbstractPresentation of antigenic peptides to CTLs at the cell surface first requires assembly of MHC class I with peptide and β2-microglobulin in the endoplasmic reticulum. This process involves an assembly complex of several proteins, including TAP, tapasin, and calreticulin, all of which associate specifically with the β2-microglobulin-assembled, open form of the class I heavy chain. To better comprehend at a molecular level the regulation of class I assembly, we have assessed the influence of multiple individual amino acid substitutions in the MHC class I α2 domain on interaction with TAP, tapasin, and calreticulin. In this report, we present evidence indicating that many residues surrounding position 134 in H-2Ld influence interaction with assembly complex components. Most mutations decreased association, but one (LdK131D) strongly increased it. The Ld mutants, with the exception of LdK131D, exhibited characteristics suggesting suboptimal intracellular peptide loading, similar to the phenotype of Ld expressed in a tapasin-deficient cell line. Notably, K131D was less peptide inducible than wild-type Ld, which is consistent with its unusually strong association with the endoplasmic reticulum assembly complex.
Publisher
The American Association of Immunologists
Subject
Immunology,Immunology and Allergy
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献