Affiliation:
1. Glycobiology Program, Center for Cancer and Transplantation Biology, Children’s National Medical Center, and Departments of Pediatrics and Biochemistry/Molecular Biology, George Washington University School of Medicine,Washington, DC 20010
Abstract
Abstract
Tumor gangliosides are highly immunosuppressive membrane glycosphingolipids that are shed into the tumor cell microenvironment. We directly tested the impact of shed gangliosides on the in vivo antitumor immune response in a syngeneic fully autochthonous system (FBL-3 erythroleukemia cells, C57BL/6 mice, and highly purified FBL-3 cell gangliosides). The major FBL-3 ganglioside was identified as GM1b by mass spectrometry. Substantial ganglioside shedding (90 pmol/108 cells/h), a requisite for their inhibition of the immune function of tumor-infiltrating leukocytes, was detected. Immunosuppression by FBL-3 gangliosides was potent; 5–20 μM inhibited the tumor-specific secondary proliferative response (80–100%) and suppressed the generation of tumor-specific CTLs (97% reduction of FBL-3 cell lysis at an E:T ratio of 100:1). In vivo, coinjection of 10 nmol of FBL-3 gangliosides with a primary FBL-3 cell immunization led to a reduced response to a secondary challenge (the increase in the draining popliteal lymph node mass, cell number, and lymphocyte thymidine incorporation were lowered by 70, 69, and 72%, respectively). Coinjection of gangliosides with a secondary tumor challenge led to a 61, 74, and 42% reduction of the increase in lymph node mass, cell number, and thymidine uptake and a 63–74% inhibition of the increase of draining lymph node T cells (CD3+), B cells (CD19+), and dendritic cells/macrophages (Mac-3+). Overall, the clear conclusion that tumor-derived gangliosides inhibit syngeneic antitumor immune responses implicates these molecules as a potent factor in promoting tumor formation and progression.
Publisher
The American Association of Immunologists
Subject
Immunology,Immunology and Allergy
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献