Differentiation of murine macrophages to express nonspecific cytotoxicity for tumor cells results in L-arginine-dependent inhibition of mitochondrial iron-sulfur enzymes in the macrophage effector cells.

Author:

Drapier J C1,Hibbs J B1

Affiliation:

1. V.A. Medical Center, Salt Lake City, UT 84148.

Abstract

Abstract Previous studies show that cytotoxic activated macrophages cause a reproducible pattern of metabolic inhibition in viable tumor target cells. This includes inhibition of DNA synthesis, two oxidoreductases of the mitochondrial electron transport chain (NADH: ubiquinone oxidoreductase and succinate: ubiquinone oxidoreductase), and the citric acid cycle enzyme aconitase. This pattern of metabolic inhibition is induced by a cytotoxic activated macrophage associated biochemical pathway with L-arginine deimination activity that synthesizes L-citrulline from L-arginine and oxygenated nitrogen derivatives from the imino nitrogen removed from the guanido group of L-arginine. Here we report that macrophages activated in vivo by infection with bacillus Calmette-Guérin or in vitro by murine rIFN-gamma or murine IFN-alpha/beta (in the presence of the second signal LPS in all cases) develop inhibition of aconitase and the same two oxidoreductases of the mitochondrial electron transport chain as was documented earlier in target cells of cytotoxic activated macrophages. In addition, this pattern of metabolic inhibition which develops in cytotoxic activated macrophages is caused by the L-arginine-dependent effector mechanism. Inhibition of mitochondrial respiration by effectors of the L-arginine-dependent cytotoxicity system results in a compensatory increase in activity of the glycolytic pathway. We speculate that the pattern of metabolic inhibition induced in cytotoxic activated macrophages by the L-arginine-dependent effector system causes changes in the macrophage intracellular environment that increases resistance to certain facultative and obligate intracellular pathogens.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3