Affiliation:
1. *Department of Biological Sciences, George Washington University, Washington, D.C. 20052; and
2. †Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
Abstract
AbstractA homologue of complement component C3 (SpC3) has been cloned and sequenced from the purple sea urchin, Strongylocentrotus purpuratus. The preprocessed, deduced protein size is estimated to be 186 kDa with a short leader and two chains, α and β. There are cysteines in conserved positions for interchain disulfide bonding, and there is a conserved thioester site in the α-chain with an associated histidine. There are five consensus N-linked glycosylation sites, and putative cleavage sites for factor I and C3 convertase. Partially purified SpC3 on protein gels shows a nonreduced size of 210 kDa and, under reducing conditions, reveals an α-chain of 130 kDa and a β-chain of 80 kDa. These sizes are larger than the deduced sizes, suggesting that the protein has carbohydrates added to most of the consensus N-linked glycosylation sites. Phylogenetic analysis of SpC3 compared with other members of the thioester protein family, which includes C3, C4, C5, and α2-macroglobulin, shows that SpC3 is the first divergent complement protein, falling at the base of the complement protein clade. Transcripts from the SpC3 gene (Sp064) are 9 kb, and the gene is expressed specifically in coelomocytes, which are the immunocytes in the sea urchin. Genome blots suggest that SpC3 is encoded by a single copy gene per haploid genome. This is the first identification of a complement component in an invertebrate, and suggests homology of the innate immune system within the deuterostome lineage of animals.
Publisher
The American Association of Immunologists
Subject
Immunology,Immunology and Allergy
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献