Immune System Development and Function in Prolactin Receptor-Deficient Mice

Author:

Bouchard Brigitte1,Ormandy Christopher J.2,Di Santo James P.3,Kelly Paul A.1

Affiliation:

1. *Institut National de la Santé et de la Recherche Médicale U-344, Endocrinologie Moléculaire, Faculté de Médecine Necker, Paris, France;

2. †Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia; and

3. ‡Institut National de la Santé et de la Recherche Médicale U-429, Hopital Necker Enfants-Malades, Paris, France

Abstract

AbstractProlactin (PRL) is the primary lactogenic pituitary hormone that plays an essential role in many aspects of reproduction, from fertilization to mammary gland development and maternal behavior. PRL has also been reported to play a role in immunoregulation. Because initial observations indicated that hypophysectomized rats present abnormalities of the immune system, including increased thymic atrophy and lymphopenia, a number of studies have focused on the potential immunomodulatory roles of PRL. This hormone exerts its biological activities following binding to specific cell surface PRL receptors (PRLRs). In this report, we have characterized the development and function of the immune system in PRLR-deficient mice. Compared with wild-type control mice, PRLR−/− mice demonstrate no alterations in thymic or splenic cellularity or in the composition of the lymphocyte subsets present in primary (bone marrow and thymus) or secondary (spleen and lymph nodes) lymphoid organs. Lymphocytes from PRLR−/− mice are functional in vitro, as they can proliferate normally to mitogens, cytokines, and allogeneic cells. PRLR−/− splenocytes display normal NK-mediated cytotoxicity to YAC-1 target cells. In vivo studies have revealed that PRLR−/− mice are able to 1) generate normal steady-state Ig levels, 2) mount a normal specific Ig response following immunization with a T-dependent Ag, 3) eliminate injected allogeneic tumor cells, and 4) effectively control Listeria monocytogenes infection. Taken together, these results show that immune system development and function proceed normally in the absence of PRL-mediated signaling and suggest that PRLR pathways are not essential for immunomodulation in vivo.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3