Differential CD3ζ Phosphorylation Is Not Required for the Induction of T Cell Antagonism by Altered Peptide Ligands

Author:

Liu Haiyan12,Vignali Dario A. A.13

Affiliation:

1. *Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105; and

2. †Graduate Program in Pathology and

3. ‡Department of Pathology, University of Tennessee Medical Center, Memphis, TN 38163

Abstract

AbstractT cells recognize foreign Ags in the form of short peptides bound to MHC molecules. Ligation of the TCR:CD3 complex gives rise to the generation of two tyrosine-phosphorylated forms of the CD3 ζ-chain, pp21 and pp23. Replacement of residues in MHC-bound peptides that alter its recognition by the TCR can generate altered peptide ligands (APL) that antagonize T cell responses to the original agonist peptide, leading to altered T cell function and anergy. This biological process has been linked to differential CD3ζ phosphorylation and generation of only the pp21 phospho-species. Here, we show that T cells expressing CD3ζ mutants, which cannot be phosphorylated, exhibit a 5-fold reduction in IL-2 production and a 30-fold reduction in sensitivity following stimulation with an agonist peptide. However, these T cells are still strongly antagonized by APL. These data demonstrate that: 1) the threshold required for an APL to block a response is much lower than for an agonist peptide to induce a response, 2) CD3ζ is required for full agonist but not antagonist responses, and 3) differential CD3ζ phosphorylation is not a prerequisite for T cell antagonism.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3