CD14-Dependent Internalization of Bacterial Lipopolysaccharide (LPS) Is Strongly Influenced by LPS Aggregation But Not by Cellular Responses to LPS

Author:

Kitchens Richard L.12,Munford Robert S.1232

Affiliation:

1. *Internal Medicine (Infectious Disease Division) and

2. Molecular Host Defense Laboratory, Departments of

3. †Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75235

Abstract

AbstractWe analyzed the impact of ligand aggregation and LPS-induced signaling on CD14-dependent LPS internalization kinetics in human monocytic THP-1 cells and murine macrophages. Using two independent methods, we found that the initial rate and extent of LPS internalization increased with LPS aggregate size. In the presence of LPS binding protein (LBP), large LPS aggregates were internalized extremely rapidly (70% of the cell-associated LPS was internalized in 1 min). Smaller LPS aggregates were internalized more slowly than the larger aggregates, and LPS monomers, complexed with soluble CD14 in the absence of LBP, were internalized very slowly after binding to membrane CD14 (5% of the cell-associated LPS was internalized in 1 min). In contrast, the initial aggregation state had little or no effect on the stimulatory potency of the LPS. Previous studies suggest that LPS-induced signal responses may influence the intracellular traffic and processing of LPS. We found that elicited peritoneal macrophages from LPS-responsive (C3H/HeN) and LPS-hyporesponsive (C3H/HeJ) mice internalized LPS with similar kinetics. In addition, pre-exposure of THP-1 cells to LPS had no effect on their ability to internalize subsequently added LPS, and pre-exposure of the cells to the LPS-specific inhibitor, LA-14-PP, inhibited stimulation of the cells without inhibiting LPS internalization. In these cells, LPS is thus internalized by a constitutive cellular mechanism(s) with kinetics that depend importantly upon the physical state in which the LPS is presented to the cell.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3