The Actin-Bundling Protein Fascin Is Involved in the Formation of Dendritic Processes in Maturing Epidermal Langerhans Cells

Author:

Ross Ralf1,Ross Xiao-Lan1,Schwing Jens1,Längin Tina1,Reske-Kunz Angelika B.1

Affiliation:

1. Clinical Research Unit, Department of Dermatology, Johannes Gutenberg University, Mainz, Germany

Abstract

AbstractDendritic cells (DC) are characterized by their unique potential to prime naive T cells. Epidermal Langerhans cells (LC), the DC resident in the epidermis, gain this immunostimulatory capacity following Ag contact in vivo or during in vitro culture of epidermal cell suspensions. To analyze differential gene expression in maturing LC, we constructed a highly representative cDNA library of cultivated LC (cLC) in λ ZAP II containing 18 × 106 independent clones. This library was screened with freshly isolated Langerhans cell (fLC)- and cLC-derived probes for cLC-specific cDNAs. The cDNAs identified were sequenced and analyzed by database searches. Two cDNA fragments were identified as fragments of fascin, indicating that fascin is differentially expressed in LC. By competitive RT-PCR, we confirmed that fascin is highly expressed in cLC cultivated for 1, 2, and 3 days, while no signals were obtained with fLC. Western blot and immunofluorescence analysis revealed cLC-specific expression of fascin on the protein level as well. Fascin is known to be involved in the organization of the actin cytoskeleton in cytoplasmatic extensions of nerve growth cones. Its differential expression in maturing LC coincides with the formation of numerous dendritic projections in LC. Their formation was inhibited by incubation of LC with fascin antisense oligonucleotides during cultivation. Therefore, we conclude that fascin is necessary for the formation of the dendritic processes of maturing Langerhans cells and may thus influence T cell-LC interaction.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3