Adjuvanticity of the Cholera Toxin A1-Based Gene Fusion Protein, CTA1-DD, Is Critically Dependent on the ADP-Ribosyltransferase and Ig-Binding Activity

Author:

Ågren Lena C.1,Ekman Lena1,Löwenadler Björn2,Nedrud John G.3,Lycke Nils Y.1

Affiliation:

1. *Department of Medical Microbiology and Immunology, University of Göteborg, Göteborg, Sweden;

2. †Department of Molecular Biology, Astra Hässle AB, Mölndal, Sweden; and

3. ‡Institute of Pathology, Case Western Reserve University, Cleveland, OH

Abstract

Abstract The ADP-ribosylating enterotoxins, cholera toxin (CT) and Escherichia coli heat-labile toxin, are among the most powerful immunogens and adjuvants yet described. An innate problem, however, is their strong toxic effects, largely due to their promiscuous binding to all nucleated cells via their B subunits. Notwithstanding this, their exceptional immunomodulating ability is attracting increasing attention for use in systemic and mucosal vaccines. Whereas others have separated adjuvanticity from toxicity by disrupting the enzymatic activity of the A1 subunit by site-directed mutagenesis, we have constructed a nontoxic molecule that combines the full enzymatic activity of the A1 subunit with a B cell targeting moiety in a gene fusion protein, the CTA1-DD adjuvant. Despite its more selective binding properties, we found comparable adjuvant effects of the novel CTA1-DD adjuvant to that of CT. Here we unequivocally demonstrate, using a panel of mutant CTA1-DD molecules, that the immunomodulating ability of CTA1-DD is dependent on both an intact enzymatic activity and the Ig-binding ability of the DD dimer. Both agents, CT and CTA1-DD, ADP-ribosylate intact B cells. However, contrary to CT, no increase in intracellular cyclic AMP in the targeted cells was detected, suggesting that cyclic AMP may not be important for adjuvanticity. Most remarkably, CTA1-DD achieves similar immunomodulating effects to CT using a ganglioside-GM1 receptor-independent pathway for internalization.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3