Monocyte Chemoattractant Protein-1 Mediates Cockroach Allergen-Induced Bronchial Hyperreactivity in Normal But Not CCR2−/− Mice: The Role of Mast Cells

Author:

Campbell Emma M.1,Charo Israel F.2,Kunkel Steven L.1,Strieter Robert M.3,Boring Landin2,Gosling Jennifa2,Lukacs Nicholas W.1

Affiliation:

1. *Departments of Pathology and

2. ‡Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94309

3. †Division of Pulmonary and Critical Care, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109; and

Abstract

Abstract Bronchial eosinophil and mononuclear cell infiltrates are a hallmark of the asthmatic lung and are associated with the induction of reversible airway hyperreactivity. In these studies, we have found that monocyte chemotactic protein-1 (MCP-1), a CC (β) chemokine, mediates airway hyperreactivity in normal and allergic mice. Using a murine model of cockroach Ag-induced allergic airway inflammation, we have demonstrated that anti-MCP-1 Abs inhibit changes in airway resistance and attenuate histamine release into the bronchoalveolar lavage, suggesting a role for MCP-1 in mast cell degranulation. In normal mice, instillation of MCP-1 induced prolonged airway hyperreactivity and histamine release. In addition, MCP-1 directly induced pulmonary mast cell degranulation in vitro. These latter effects would appear to be selective because no changes were observed when macrophage-inflammatory protein-1α, eotaxin, or MCP-3 were instilled into the airways of normal mice or when mast cells were treated in vitro. Airway hyperreactivity was mediated by MCP-1 through CCR2 because allergen-induced as well as direct MCP-1 instilled-induced changes in airway hyperreactivity were significantly attenuated in CCR2 −/− mice. The neutralization of MCP-1 in allergic animals and instillation of MCP-1 in normal animals was related to leukotriene C4 levels in the bronchoalveolar lavage and was directly induced in pulmonary mast cells by MCP-1. Thus, these data identify MCP-1 and CCR2 as potentially important therapeutic targets for the treatment of hyperreactive airway disease.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3