Expression and Characterization of Recombinant Subunits of Human Complement Component C8: Further Analysis of the Function of C8α and C8γ

Author:

Schreck Steven F.1,Plumb Mnason E.1,Platteborze Peter L.1,Kaufman Kenneth M.1,Michelotti Gregory A.1,Letson Carole S.1,Sodetz James M.1

Affiliation:

1. Department of Chemistry and Biochemistry and School of Medicine, University of South Carolina, Columbia, SC 29208

Abstract

Abstract Human C8 is composed of three nonidentical subunits (C8α, C8β, and C8γ) that are encoded in separate genes. In C8 isolated from serum, these are arranged as a disulfide-linked C8α-γ dimer that is noncovalently associated with C8β. In this study, a recombinant form of C8α-γ was expressed independently of C8β in insect cells and COS-7 cells and was shown to be equivalent to serum-derived C8α-γ with respect to its ability to combine with C8β and form functional C8. Also expressed separately were mutant (mut) forms of C8α and C8γ in which the single interchain disulfide bond was eliminated. MutC8α exhibited the ability to combine with C8β and express hemolytic activity, although at a lower level than human C8. Addition of purified mutC8γ increased this activity, presumably by binding to mutC8α. A possible role for C8γ as a retinol binding protein was also investigated. Absorbance spectroscopy and fluorescence emission and quenching revealed no specific binding of retinol to mutC8γ. Together, these results indicate that 1) the biosynthesis and secretion of C8α-γ is not dependent on C8β, which is consistent with in vivo observations in C8β-deficient humans; 2) C8α can be synthesized independently of C8γ; therefore, protection of C8α from premature membrane interactions during biosynthetic processing is not a likely function of C8γ; 3) C8γ enhances but is not required for expression of C8 activity; and 4) C8γ does not bind retinol; therefore, it cannot function as a retinol transport protein.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3