Affiliation:
1. Harvard Medical School, Center for Blood Research, Boston, MA 02115
Abstract
AbstractCellular adhesion through the β2 integrin lymphocyte function-associated Ag (LFA)-1 is a complex event involving activation, ligand binding, and cell shape changes that ultimately result in enhanced adhesion. In this report we define requirements for ligand binding and post receptor signaling by comparing two mechanisms of activation of LFA-1: 1) inside-out signaling and 2) direct activation by the β2 Ab, CBR LFA-1/2. Our results demonstrate that activation of LFA-1 binding to ICAM-1 by CBR LFA-1/2, in contrast to inside-out signaling mechanisms, does not require protein kinase C activation or protein phosphatase 2A activity nor is it affected by agents that interfere with reorganization of the cytoskeleton. Inhibition of protein tyrosine kinase activity does not affect ICAM-1 binding by either mechanism of activation. However, activation by either mode does require the presence of the β cytoplasmic domain; deletion of the C-terminal phenylalanine or the five amino acid stretch between 756–762 abolished activation of LFA-1. This, combined with the observation that intracellular energy pools must be preserved, implicates the β cytoplasmic domain in a key energy-dependent conformational change in LFA-1 that is required to achieve enhanced ligand binding. Post ligand binding events induced by both PMA and Ab stimulation, as measured by homotypic aggregation, require protein tyrosine kinase, phosphatase, and RhoA activities. By examining both ligand binding and aggregation, we have been able to dissect the signaling components critical in the multistep process of LFA-1-mediated cellular adhesion.
Publisher
The American Association of Immunologists
Subject
Immunology,Immunology and Allergy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献