Evidence for Sulfate Modification of H-2Dd on N-Linked Carbohydrate(s): Possible Involvement in Ly-49A Interaction

Author:

Chang Chew Shun1,Kane Kevin P.1

Affiliation:

1. Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada

Abstract

AbstractMurine class I molecules are ligands for Ly-49 molecules, a family of regulatory receptors expressed on murine NK cells. Since soluble sulfated mono- and polysaccharides interfere with the interaction of Ly-49A, a C-type lectin, and its class I ligand, Dd, it is possible that the oligosaccharides on class I molecules are sulfated and participate in Ly-49A binding. In this report, we show that H-2Dd expressed by activated T cells and various tumor cell lines is sulfated, as demonstrated by immunoprecipitation of Dd following Na235SO4 labeling. The 35SO4−2 label on Dd expressed by a representative tumor cell, NZB1.1, is removed by peptide N-glycosidase F, but is resistant to endoglycosidase H treatment, indicating that the sulfate group is located on mature N-linked oligosaccharides. Two-dimensional SDS-PAGE analysis revealed that all major mature glycosylation variants of the Dd expressed by NZB1.1 are sulfated. Sodium chlorate, a potent inhibitor of ATP-sulfurylase, which prevents the formation of the sulfate donor, 3′-phosphoadenosine 5′-phosphosulfate, inhibited metabolic sulfation of Dd. NZB1.1 binds isolated Ly-49A immobilized on solid phase through an interaction by cell surface Dd, since cell adhesion was blocked by Abs directed against Dd or Ly-49A. Treatment of the Dd-expressing NZB1.1 tumor cells with sodium chlorate reduced their ability to bind immobilized Ly-49A, particularly when Ly-49A density was limiting. These results provide evidence for sulfation of H-2Dd oligosaccharide moieties, and suggest a role for this posttranslational modification in the interaction of Dd with Ly-49A.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3