IL-18 Inhibits Diabetes Development in Nonobese Diabetic Mice by Counterregulation of Th1-Dependent Destructive Insulitis

Author:

Rothe Helga12,Hausmann Andreas1,Casteels Kristina3,Okamura Hakuri4,Kurimoto Masashi5,Burkart Volker1,Mathieu Chantal3,Kolb Hubert1

Affiliation:

1. *Diabetes Research Institute, Heinrich-Heine University, Düsseldorf, Germany;

2. †Institute of Diabetes Research, Munich, Germany;

3. ‡Department of Endocrinology, Katholieke University, Leuven, Belgium;

4. §Hyogo College of Medicine, Fujisaka, Japan; and

5. ¶Fujisaki Institute, Fujisaki, Japan

Abstract

AbstractThe development of type 1 diabetes in animal models is T cell and macrophage dependent. Islet inflammation begins as peripheral benign Th2 type insulitis and progresses to destructive Th1 type insulitis, which is driven by the innate immune system via secretion of IL-12 and IL-18. We now report that daily application of IL-18 to diabetes-prone female nonobese diabetic mice, starting at 10 wk of age, suppresses diabetes development (p < 0.001, 65% in sham-treated animals vs 33% in IL-18-treated animals by 140 days of age). In IL-18-treated animals, we detected significantly lower intraislet infiltration (p < 0.05) and concomitantly an impaired progression from Th2 insulitis to Th1-dependent insulitis, as evidenced from IFN-γ and IL-10 mRNA levels in tissue. The deficient progression was probably due to lesser mRNA expression of the Th1 driving cytokines IL-12 and IL-18 by the innate immune system (p < 0.05). Furthermore, the mRNA expression of inducible NO synthase, a marker of destructive insulitis, was also not up-regulated in the IL-18-treated group. IL-18 did not exert its effect at the levels of islet cells. Cultivation of islets with IL-18 affected NO production or mitochondrial activity and did not protect from the toxicity mediated by IL-1β, TNF-α, and IFN-γ. In conclusion, we show for the first time that administration of IL-18, a mediator of the innate immune system, suppresses autoimmune diabetes in nonobese diabetic mice by targeting the Th1/Th2 balance of inflammatory immune reactivity in the pancreas.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3