Identification of T Cell Determinants on Human Type II Collagen Recognized by HLA-DQ8 and HLA-DQ6 Transgenic Mice

Author:

Krco Christopher J.1,Watanabe Shohei1,Harders Jerry1,Griffths Marie M.2,Luthra Harvinder3,David Chella S.1

Affiliation:

1. *Immunology and

2. ‡Research Service, Veterans Affairs Medical Center and Rheumatology Division, University of Utah, Salt Lake City, UT 84148

3. †Rheumatology, Mayo Clinic, Rochester, MN 55905; and

Abstract

Abstract HLA-DQA1*0301 and HLA-DQB1*0302 genes encoding the HLA-DQ8 molecule and HLA-DQA1*0103 and HLA-DQB1*0601 genes encoding the HLA-DQ6 molecule were introduced into H-2Aβo knockout mice. Three lines of transgenic mice were established: HLA-DQ8, HLA-DQ6, and HLA-DQ8β6α. HLA-DQ8 mice are susceptible to collagen-induced arthritis, while HLA-DQ6 mice are resistant. HLA-DQ8β6α mice develop polychrondritis in addition to arthritis. Transgenic mice were primed and challenged with individual synthetic peptides representing human type II collagen. A total of 101 synthetic peptides were tested in each transgenic line of mice. HLA-DQ8 mice responded to 15 synthetic peptides representing all cyanogen bromide fragments. In contrast, HLA-DQ6 mice responded to a subset of the peptides recognized by HLA-DQ8 T cells. HLA-DQ8β6α mice, although exhibiting diminished responses to the majority of HLA-DQ8-restricted determinants, elicited enhanced responses to two peptides. In addition, HLA-DQ8β6α mice respond to two unique peptide determinants contained within cyanogen bromide fragments CB10 and CB11 showing the significance of mixed isotype dimers in the immune response. The determinants recognized by the HLA-DQ transgenic mice are distinct from those previously identified using conventional laboratory mice. These results suggest that human class II transgenic mice offer a means of identifying human class II-restricted epitopes associated with potential human autoantigens.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3