CD40 ligand-CD40 interactions are necessary for the initiation of insulitis and diabetes in nonobese diabetic mice.

Author:

Balasa B1,Krahl T1,Patstone G1,Lee J1,Tisch R1,McDevitt H O1,Sarvetnick N1

Affiliation:

1. Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA.

Abstract

Abstract The nonobese diabetic (NOD) mouse spontaneously develops T cell-dependent autoimmune diabetes. Here, we investigate the role of CD40 ligand (CD40L)-CD40 costimulation in the initiation and progression of this disease. Anti-CD40L mAb treatment of 3- to 4-wk-old NOD females (the age at which insulitis typically begins) completely prevented the insulitis and diabetes. In contrast, treatment of such mice with anti-CD40L at >9 wk of age did not inhibit the disease process. These results suggest that a costimulatory signal by CD40L is required early but not in the effector phase of disease development. Anti-CD40L treatment affected the priming of islet Ag-specific T cell responses in vivo. Cytokine analysis revealed a dramatic decrease in IFN-gamma and IL-2 release without a concomitant increase in IL-4 production by T cells from anti-CD40L-treated mice. Thus, anti-CD40L impaired the islet Ag-specific Th1 cell response in vivo, and the prevention of diabetes by anti-CD40L was not associated with switching of the response from a Th1 to a Th2 profile. Cotransfer of splenocytes from anti-CD40L-treated mice with splenocytes from diabetic NOD mice into NOD/scid mice did not inhibit the transfer of disease, indicating that anti-CD40L does not prevent the disease by inducing regulatory cells. Since anti-CD40L clearly prevented the insulitis by inhibiting the development and further accumulation of pathogenic Th1 cells to islets of Langerhans, we conclude that CD40L-CD40 costimulation is required for early events in the development of spontaneous autoimmune diabetes.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3