Aryl Hydrocarbon Receptor Activation in Pulmonary Alveolar Epithelial Cells Limits Inflammation and Preserves Lung Epithelial Cell Integrity

Author:

Zimmerman Elizabeth1ORCID,Sturrock Anne12,Reilly Christopher A.3ORCID,Burrell-Gerbers Katherine L.3,Warren Kristi12ORCID,Mir-Kasimov Mustafa12,Zhang Mingyang A.1ORCID,Pierce Megan S.1,Helms My N.1ORCID,Paine Robert12

Affiliation:

1. *Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT

2. †George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT

3. ‡Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT

Abstract

Abstract The aryl hydrocarbon receptor (AHR) is a receptor/transcription factor widely expressed in the lung. The physiological roles of AHR expressed in the alveolar epithelium remain unclear. In this study, we tested the hypothesis that alveolar epithelial AHR activity plays an important role in modulating inflammatory responses and maintaining alveolar integrity during lung injury and repair. AHR is expressed in alveolar epithelial cells (AECs) and is active. AHR activation with the endogenous AHR ligand, FICZ (5,11-dihydroindolo[3,2-b] carbazole-6-carboxaldehyde), significantly suppressed inflammatory cytokine expression in response to inflammatory stimuli in primary murine AECs and in the MLE-15 epithelial cell line. In an LPS model of acute lung injury in mice, coadministration of FICZ with LPS suppressed protein leak, reduced neutrophil accumulation in BAL fluid, and suppressed inflammatory cytokine expression in lung tissue and BAL fluid. Relevant to healing following inflammatory injury, AHR activation suppressed TGF-β–induced expression of genes associated with epithelial–mesenchymal transition. Knockdown of AHR in primary AECs with shRNA or in CRISPR-Cas-9–induced MLE-15 cells resulted in upregulation of α-smooth muscle actin (αSma), Col1a1, and Fn1 and reduced expression of epithelial genes Col4a1 and Sdc1. MLE-15 clones lacking AHR demonstrated accelerated wound closure in a scratch model. AHR activation with FICZ enhanced barrier function (transepithelial electrical resistance) in primary murine AECs and limited decline of transepithelial electrical resistance following inflammatory injury. AHR activation in AECs preserves alveolar integrity by modulating inflammatory cytokine expression while enhancing barrier function and limiting stress-induced expression of mesenchymal genes.

Funder

VA Merit Grant

Publisher

The American Association of Immunologists

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3