The Role of B7-1 and B7-2 Costimulation for the Generation of CTL Responses In Vivo

Author:

Sigal Luis J.1,Reiser Hans2,Rock Kenneth L.1

Affiliation:

1. *Department of Pathology, University of Massachusetts Medical Center, Worcester, MA 01655; and

2. †Department of Immunology, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom

Abstract

AbstractThe role of B7-1 and B7-2 costimulatory molecules in the generation of Ag-specific CD8+ CTLs is not well understood. In this paper, we analyze the role of both B7-1 and B7-2 in the generation of CTLs to nonliving, exogenous Ag and to live virus. To analyze the role of B7 costimulation in the induction of CTLs, we blocked B7-1 and/or B7-2 in vivo by injecting C57BL/6 mice with anti-B7-1 and/or anti-B7-2 mAbs; the mice were subsequently immunized with either chicken OVA that had been cross-linked to beads as a model of exogenous Ags or with wild-type and recombinant vaccinia virus expressing different forms of chicken OVA as models of viral Ags. Our results indicate that B7 costimulation is necessary in the generation of CTLs for all of these Ags. Since the B7 molecules could be costimulating CD8+ and/or CD4+ T cells in wild-type animals, we also examined the role of costimulation in the generation of CTLs to exogenous and viral Ag in MHC class II-deficient mice lacking most CD4+ T cells. In these animals, a combination of both mAbs also blocked all CTL responses, indicating that the Th cell-independent activation of CTLs is dependent upon the B7-costimulatory signals supplied to the CD8+ cell. These findings contribute to the understanding of the role of costimulation for the generation of CTLs. We also discuss the implications of these findings on the role of professional APCs in the initiation of CTL responses.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3