An Antibody Neutralization Determinant on Domain III and the First α-Helical Domain in the Stem-Anchor Region of Tembusu Virus Envelope Protein

Author:

Yang Baolin1,Meng Runze1,Feng Chonglun1,Huang Jingjing1,Li Qiong1,Wang Xiaoyan1,Zhang Dabing1

Affiliation:

1. Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China

Abstract

Abstract Previous studies identified three neutralizing epitopes on domains I, II, and III of the Tembusu virus (TMUV) envelope (E). More evidence is needed to understand the molecular basis of Ab-mediated neutralization and protection against TMUV. In this study, we observed a neutralizing mAb, 6C8, that neutralized TMUV infection primarily by inhibiting cell attachment. In immunofluorescence assays, 6C8 recognized the premembrane and E proteins coexpressed in HEK-293T cells, but failed to react with premembrane or E expressed individually. Epitope mapping identified nine E protein residues positioned on BC/EF loops and F/G strands in domain III and the first α-helical domain in the stem region. Further investigation with mutant viruses showed that 6C8 pressure resulted in mutations at residues 330 of BC loop and 409 of the first α-helical domain, although 6C8 only exhibited a moderate neutralizing activity in BHK-21 cells and a weak protective activity in BALB/c mice and Shaoxing duck models. Mutations A330S and T409M conferred high- and low-level 6C8 resistance, respectively, whereas the combination of A330S and T409M mutations conferred moderate-level 6C8 resistance. As a result, a quasispecies comprising three groups of antigenic variants appeared in BHK-21 cell–derived viral stocks after repeated passages of TMUV strain Y in the presence of 6C8 treatment. Taken together, these findings have raised a concern about Ab-induced antigenic variations in vivo, and they have revealed information concerning the conformational structure of the 6C8 epitope and its role in constraint on antigenic variations. The present work contributes to a better understanding of the complexity of the TMUV immunogen.

Funder

China Agriculture Research System of MOF and MARA

National Key Research and Development Program of China

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3