Divergence of Binding, Signaling, and Biological Responses to Recombinant Human Hybrid IFN

Author:

Hu Renqiu1,Bekisz Joseph1,Hayes Mark1,Audet Susette2,Beeler Judy2,Petricoin Emanuel1,Zoon Kathryn1

Affiliation:

1. *Division of Cytokine Biology, Office of Therapeutics Research and Review, and

2. †Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, MD 20892

Abstract

Abstract Three human IFN-α hybrids, HY-1 [IFN-α21a(1-75)/α2c(76-165)], HY-2 [IFN-α21a(1-95)/α2c(96-165)], and HY-3 [IFN-α2c(1-95)/α21a(96-166)], were constructed, cloned, and expressed. The hybrids had comparable specific antiviral activities on Madin-Darby bovine kidney (MDBK)3 cells but exhibited very different antiproliferative and binding properties on human Daudi and WISH cells and primary human lymphocytes. Our data suggest that a portion of the N-terminal region of the molecule is important for interaction with components involved in binding of IFN-α2b while the C-terminal portion of IFN is critical for antiproliferative activity. A domain affecting the antiproliferative activity was found within the C-terminal region from amino acid residues 75–166. The signal transduction properties of HY-2 and HY-3 were evaluated by EMSA and RNase protection assays. Both HY-2 and HY-3 induced activation of STAT1 and 2. However, HY-2 exhibited essentially no antiproliferative effects at concentrations that activated STAT1 and 2. Additionally, at concentrations where no antiproliferative activity was seen, HY-2 induced a variety of IFN-responsive genes to the same degree as HY-3. RNase protection assays also indicate that, at concentrations where no antiproliferative activity was seen for HY-2, this construct retained the ability to induce a variety of IFN-inducible genes. These data suggest that the antiproliferative response may not be solely directed by the activation of the STAT1 and STAT2 pathway in the cells tested.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3