Inflammation and Macrophage Loss Mark Increased Susceptibility in a Genetic Model of Acute Viral Infection–Induced Tissue Damage

Author:

Annis Jessica L.12ORCID,Brown Michael G.1234ORCID

Affiliation:

1. *Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA

2. †Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA

3. ‡Department of Medicine, Division of Nephrology, University of Virginia, Charlottesville, VA

4. §Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA

Abstract

Abstract M.R2k/b mice are identical to the MA/My parent strain aside from a 5.58-Mb C57L-derived region on chromosome 17 (Cmv5s) that causes increased susceptibility to acute murine CMV (MCMV) infection and the development of significant spleen tissue damage. Spleen pathology begins at the marginal zone (MZ), apparent by 2 d postinfection (dpi), and progresses throughout the red pulp by 4 dpi. To better understand how M.R2k/b mice respond to infection and how Cmv5s contributes to tissue damage in the spleen, we assessed the regulation of myeloid cells and inflammation during acute MCMV infection in MA/My and M.R2k/b mice. We found that Cmv5s drove increased neutrophil accumulation and cell death at the MZ, which corresponded with evidence of localized oxidative stress and increased overall spleen IL-6 and TGF-β1 early during infection. Further assessment of MCMV infection dynamics at the early MZ revealed infected SIGNR1+ MZ macrophages as the first apparent cell type lost during infection in these mice and the likely target of early neutrophil recruitment. Spleen macrophages were also identified as the mediators of differential spleen IL-6 and TGF-β1 between MA/My and M.R2k/b mice. Interrogation of MCMV progression past 2 dpi revealed substantial M.R2k/b F480+ red pulp macrophage loss along with buildup of oxidative stress and MZ macrophage debris that was not neutrophil dependent. Together we identify Cmv5s-driven macrophage loss and inflammation during acute MCMV infection corresponding with the spatial and temporal development of spleen tissue damage.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

The American Association of Immunologists

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3