Apoptosis of Epithelial Cells and Macrophages Due to Infection with the Obligate Intracellular PathogenChlamydia psittaci

Author:

Ojcius David M.1,Souque Philippe1,Perfettini Jean-Luc1,Dautry-Varsat Alice1

Affiliation:

1. Unité de Biologie des Interactions Cellulaires, Centre National de la Recherche Scientifique 1960, Institut Pasteur, Paris, France

Abstract

AbstractWe have characterized the cytotoxic activity of the obligate intracellular bacterium Chlamydia psittaci, which resides within a membrane-bound vacuole during the 2-day infection cycle. We have established that infected epithelial cells and macrophages die through apoptosis, which is measurable within 1 day of infection and requires productive infection by the bacteria. Inhibition of host cell protein synthesis has no effect on cell death, but blocking bacterial entry or bacterial protein synthesis prevents apoptosis, implying that bacterial growth is required for death of the host cell. Apoptosis was confirmed through the use of electron microscopy, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, gel agarose electrophoresis of fragmented DNA, and propidium-iodide labeling of host cell nuclei. Although infected cells died preferentially, both infected and uninfected cells became apoptotic, suggesting that the infected cells may secrete proapoptotic factors. Inhibition of either of two proapoptotic enzymes, caspase-1 or caspase-3, did not significantly affect Chlamydia-induced apoptosis. These results suggest that, as in the case of apoptosis due to Bax expression or oncogene dysregulation, which initiate the apoptotic program within the cell interior, the Chlamydia infection may trigger an apoptotic pathway that is independent of known caspases. As apoptotic cells secrete proinflammatory cytokines, Chlamydia-induced apoptosis may contribute to the inflammatory response of the host.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3