CD154/CD40 and CD70/CD27 interactions have different and sequential functions in T cell-dependent B cell responses: enhancement of plasma cell differentiation by CD27 signaling.

Author:

Jacquot S1,Kobata T1,Iwata S1,Morimoto C1,Schlossman S F1

Affiliation:

1. Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.

Abstract

Abstract CD40, a TNF receptor family member, plays a central role in T cell-mediated B cell activation. We have recently demonstrated that CD27, another TNF receptor family member, was also involved in B cell regulation and enhanced Ig production. In this report we compare CD27 and CD40 signals in B cell function. We selectively mimicked the effect of T cell help by addition to peripheral blood B cells activated with Staphylococcus aureus Cowan I strain and IL-2 of irradiated 300-19 cells transfected with either the CD70 (CD27 ligand) gene or the CD154 (CD40 ligand) gene, the vector alone, or both CD70 and CD154 genes. CD27 ligation induced only a slight increase in B cell proliferation compared with the dramatic enhancement induced by CD40 ligation; double ligation proved to be less efficient than CD40 ligation alone. In contrast, IgG production was increased only by CD27 ligation alone. Moreover, the CD27 signal was more efficient when it was given on day 2 of the culture rather than on day 0. Phenotypic analysis of the activated cells showed that CD27 ligation increased the percentage of cells showing a plasma cell profile (CD19-, CD38+), whereas upon CD40 ligation most of the cells still had a germinal center-like phenotype (CD19+, CD38+). Our results suggest that the CD27 and CD40 signals are not synergistic but, rather, are complementary and involve distinct steps of T cell-dependent B cell activation. CD27 may be more important in the induction of plasma cell differentiation at a time when the expansion phase has already occurred.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3