Single-Molecule DNA Methylation Reveals Unique Epigenetic Identity Profiles of T Helper Cells

Author:

Goldsmith Chloe1ORCID,Thevin Valentin1ORCID,Fesneau Olivier1,Matias Maria I.2,Perrault Julie2,Abid Ali Hani1ORCID,Taylor Naomi23,Dardalhon Valérie2,Marie Julien C.1ORCID,Hernandez-Vargas Hector14ORCID

Affiliation:

1. *Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon, The French League Against Cancer Certified Team, INSERM U1052, CNRS UMR 5286, Léon Bérard Centre and University of Lyon, Lyon, France

2. †Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France

3. ‡Pediatric Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD

4. §Genomics Consulting, Bron, France

Abstract

Abstract Both identity and plasticity of CD4 T helper (Th) cells are regulated in part by epigenetic mechanisms. However, a method that reliably and readily profiles DNA base modifications is still needed to finely study Th cell differentiation. Cytosine methylation in CpG context (5mCpG) and cytosine hydroxymethylation (5hmCpG) are DNA modifications that identify stable cell phenotypes, but their potential to characterize intermediate cell transitions has not yet been evaluated. To assess transition states in Th cells, we developed a method to profile Th cell identity using Cas9-targeted single-molecule nanopore sequencing. Targeting as few as 10 selected genomic loci, we were able to distinguish major in vitro polarized murine T cell subtypes, as well as intermediate phenotypes, by their native DNA 5mCpG patterns. Moreover, by using off-target sequences, we were able to infer transcription factor activities relevant to each cell subtype. Detection of 5mCpG and 5hmCpG was validated on intestinal Th17 cells escaping transforming growth factor β control, using single-molecule adaptive sampling. A total of 21 differentially methylated regions mapping to the 10-gene panel were identified in pathogenic Th17 cells relative to their nonpathogenic counterpart. Hence, our data highlight the potential to exploit native DNA methylation profiling to study physiological and pathological transition states of Th cells.

Funder

Institut National de la Santé et de la Recherche Médicale

Institut National Du Cancer

MSD Avenir

Agence Nationale de la Recherche

Fonds Amgen

Publisher

The American Association of Immunologists

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3