Binding of malaria T cell epitopes to DR and DQ molecules in vitro correlates with immunogenicity in vivo: identification of a universal T cell epitope in the Plasmodium falciparum circumsporozoite protein.

Author:

Calvo-Calle J M1,Hammer J1,Sinigaglia F1,Clavijo P1,Moya-Castro Z R1,Nardin E H1

Affiliation:

1. Department of Medical and Molecular Parasitology, New York University School of Medicine 10016, USA.

Abstract

Abstract The efficacy of a malaria peptide vaccine would be enhanced by the inclusion of a parasite-derived universal T cell epitope to ensure that all vaccinees develop parasite-specific cellular and humoral immunity. Two circumsporozoite (CS) protein T cell epitopes, previously identified by CD4+ T cell clones derived from Plasmodium falciparum sporozoite-immunized volunteers, were studied to determine their HLA class II binding potential. One epitope, located in amino acid (aa) 326-345 of the P. falciparum (NF54 strain) CS protein, was "universal" in that it could bind to multiple DR and DQ molecules in vitro. In contrast, the second epitope, T1, which is located in the CS repeat region, was recognized by T cells in the context of DQ6 (DQB1*0603) and did not bind with high affinity to any of the class II molecules tested in the peptide binding assays. The in vitro patterns of peptide/HLA interactions correlated with immunogenicity in vivo. A multiple antigen peptide (MAP) containing the aa 326-345 epitope elicited responses in eight inbred strains (H-2(a,b,d,k,p,q,r,s)), while the T1 MAP was recognized by only a single haplotype, H-2b. The combination of the universal aa 326-345 T cell epitope and the T1 repeat in a di-epitope MAP overcame the genetic restriction to the P. falciparum CS repeat region and elicited antisporozoite Ab responses in all of the MAP-immunized mice. Synthetic peptide malaria vaccines containing the aa 326-345 universal T cell epitope would be expected to elicit parasite-specific immune responses in both sporozoite-primed and naive individuals of diverse genetic backgrounds.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3