Transcriptional Regulation and Signaling of Type IV IFN with Identification of the ISG Repertoire in an Amphibian Model, Xenopus laevis

Author:

Chen Shan Nan1ORCID,Li Bo123ORCID,Gan Zhen1ORCID,Wang Kai Lun1,Li Li1ORCID,Pang An Ning1,Peng Xue Yun1,Ji Jia Xiang1ORCID,Deng Yu Hang1ORCID,Li Nan1ORCID,Liu Lan Hao2,Sun Yan Ling2,Wang Su2,Huang Bei1,Nie Pin123ORCID

Affiliation:

1. *State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China

2. †Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China

3. ‡School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China

Abstract

Abstract The type IV IFN (IFN-υ) is reported in vertebrates from fish to primary mammals with IFN-υR1 and IL-10R2 as receptor subunits. In this study, the proximal promoter of IFN-υ was identified in the amphibian model, Xenopus laevis, with functional IFN-sensitive responsive element and NF-κB sites, which can be transcriptionally activated by transcription factors, such as IFN regulatory factor (IRF)1, IRF3, IRF7, and p65. It was further found that IFN-υ signals through the classical IFN-stimulated gene (ISG) factor 3 (ISGF3) to induce the expression of ISGs. It seems likely that the promoter elements of the IFN-υ gene in amphibians is similar to type III IFN genes, and that the mechanism involved in IFN-υ induction is very much similar to type I and III IFNs. Using recombinant IFN-υ protein and the X. laevis A6 cell line, >400 ISGs were identified in the transcriptome, including ISGs homologous to humans. However, as many as 268 genes were unrelated to human or zebrafish ISGs, and some of these ISGs were expanded families such as the amphibian novel TRIM protein (AMNTR) family. AMNTR50, a member in the family, was found to be induced by type I, III, and IV IFNs through IFN-sensitive responsive element sites of the proximal promoter, and this molecule has a negative role in regulating the expression of type I, III, and IV IFNs. It is considered that the current study contributes to the understanding of transcription, signaling, and functional aspects of type IV IFN at least in amphibians.

Funder

National Natural Science Foundation-Shandong Joint Fund

China Agriculturre Research System of MOF and MARA

special top talent plan "One Thing One Decision (Yishi Yiyi)"

"First Class Fishery Discipline"

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3