Alloreactive and Syngeneic CTL Are Comparably Dependent on Interaction with MHC Class I α-Helical Residues

Author:

Hornell Tara M. C.1,Solheim Joyce C.1,Myers Nancy B.1,Gillanders William E.1,Balendiran Ganesaratnam K.2,Hansen Ted H.1,Connolly Janet M.1

Affiliation:

1. *Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110; and

2. †Department of Biochemistry and Biophysics, Texas A & M University, College Station, TX 77843

Abstract

AbstractThe molecular basis for the difference in the strength of T cell responses to self vs alloantigens is unknown, but may reflect how T cells are selected in the thymus. Because T cells with a high affinity for foreign as opposed to self MHC molecules are able to mature, it has been proposed that alloreactive T cells may be more strongly dependent upon interaction with MHC residues than are self-restricted T cells. This study was undertaken to rigorously address this hypothesis. Whereas other studies have compared self vs alloantigen recognition of different MHC alleles by a single T cell clone, we have compared self vs alloantigen recognition of a single MHC allele, H-2Ld, by a large panel of self-restricted and alloreactive T cell clones. Target cells expressing Ld molecules mutated at several different potential TCR contact residues were analyzed to determine which residues are important for recognition by self-restricted vs alloreactive T cells. We unequivocally demonstrate that self-restricted and alloreactive T cells do not differ, but rather are comparably dependent on interaction with MHC residues. Importantly, both self-restricted and alloreactive T cells are dependent upon the same MHC residues as primary contacts and, in addition, share a common recognition pattern of Ld. Furthermore, our analysis enables us to provide a model for allotype-specific T cell recognition of Ld vs Kb class I molecules.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3