Recombinant IFN-α (2b) Increases the Expression of Apoptosis Receptor CD95 and Chemokine Receptors CCR1 and CCR3 in Monocytoid Cells

Author:

Zella Davide1,Barabitskaja Oxana1,Casareto Luca2,Romerio Fabio1,Secchiero Paola13,Reitz Marvin S.1,Gallo Robert C.1,Weichold Frank F.1

Affiliation:

1. *Institute of Human Virology, University of Maryland, Baltimore MD 21201;

2. †Laboratory of Basic Science, National Cancer Institute, National Institutes of Health, Bethesda MD 20814; and

3. ‡Department of Morphology and Embriology, Human Anatomy Section, Ferrara, Italy

Abstract

AbstractIFN-α-2b, known as potent immune modulator, can either inhibit or enhance immune cell activity within the tightly regulated microenvironment of inflammation, depending upon the concentration of the cytokine and the activation stage of the cell. Chemokine receptors, which not only mediate chemotaxis of immune cells to the site of inflammation but also affect cellular activation by transferring corresponding signals, represent yet another level of immune regulation. Here we demonstrate that IFN-α increases the expression of CCR1 and CCR3 in primary mononuclear phagocytes, as well as in the monocytoid cell line U937. Enhanced receptor mRNA expression correlated with functional readouts such as increased intracellular calcium mobilization and cell migration in response to ligands. Expression of CCR2b, CCR4, CCR5, and CXCR4 was unchanged or decreased after IFN-α treatment. These observations indicate a differentially regulated cellular signaling relationship of IFN-α pathways and chemokine receptor expression. We also provide evidence that, under these conditions, IFN-α treatment increased the expression of CD95 (Fas, Apo1), resulting in enhanced susceptibility to apoptosis. Taken together, these data add important information for the rational application of IFN-α (2b) in immune and cancer therapies.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3