Simultaneous depletion of CD4+ and CD8+ T lymphocytes is required to reactivate chronic infection with Toxoplasma gondii.

Author:

Gazzinelli R1,Xu Y1,Hieny S1,Cheever A1,Sher A1

Affiliation:

1. Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.

Abstract

Abstract C57BL/6 mice chronically infected with an avirulent strain (ME-49) of Toxoplasma gondii were used to study the mechanisms by which T lymphocytes and IFN-gamma prevent reactivation of latent infection. Infected animals were treated with mAb, either anti-CD8, anti-CD4, anti-CD4 plus anti-CD8, anti-IFN-gamma, or anti-CD4 plus anti-IFN-gamma and the mice followed for survival, histopathology, cyst numbers, and spleen cell cytokine responses. In agreement with previously published findings, treatment with anti-IFN-gamma antibodies fully reactivated the asymptomatic infection, inducing massive necrotic areas in the brain with the appearance of free tachyzoites and death of all animals within 2 wk. Mice treated with the combination of anti-CD4 plus anti-CD8 antibodies showed augmented pathology and mortality nearly identical to the anti-IFN-gamma- treated animals. In contrast, treatment with anti-CD4 or anti-CD8 mAb alone failed to result in significantly enhanced brain pathology or mortality. In additional experiments, full reactivation of infection was observed in mice treated with anti-CD4 plus anti-IFN-gamma indicating that CD4+ lymphocytes are not required for the pathology resulting from IFN-gamma neutralization. Cytokine measurements on parasite Ag-stimulated spleen cells from mAb-treated mice indicated that both CD4+ and CD8+ cells produce IFN-gamma whereas only CD4+ cells contribute to parasite Ag-induced IL-2 synthesis. Together, these results suggest that CD4+ and CD8+ lymphocytes act additively or synergistically to prevent reactivation of chronic T. gondii infection probably through the production of IFN-gamma.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3