Affiliation:
1. *Yale University, New Haven, CT
2. †Department of Immunobiology, Yale School of Medicine, New Haven, CT
Abstract
Abstract
B cells, like T cells, can infiltrate sites of inflammation, but the processes and B cell subsets involved are poorly understood. Using human cells and in vitro assays, we find only a very small number of B cells will adhere to TNF-activated (but not to resting) human microvascular endothelial cells (ECs) under conditions of venular flow and do so by binding to ICAM-1 and VCAM-1. CXCL13 and, to a lesser extent, CXCL10 bound to the ECs can increase adhesion and induce transendothelial migration (TEM) of adherent naive and memory B cells in 10–15 min through a process involving cell spreading, translocation of the microtubule organizing center (MTOC) into a trailing uropod, and interacting with EC activated leukocyte cell adhesion molecule. Engagement of the BCR by EC-bound anti-κ L chain Ab also increases adhesion and TEM of κ+ but not λ+ B cells. BCR-induced TEM takes 30–60 min, requires Syk activation, is initiated by B cell rounding up and translocation of the microtubule organizing center to the region of the B cell adjacent to the EC, and also uses EC activated leukocyte cell adhesion molecule for TEM. BCR engagement reduces the number of B cells responding to chemokines and preferentially stimulates TEM of CD27+ B cells that coexpress IgD, with or without IgM, as well as CD43. RNA-sequencing analysis suggests that peripheral blood CD19+CD27+CD43+IgD+ cells have increased expression of genes that support BCR activation as well as innate immune properties in comparison with total peripheral blood CD19+ cells.
Funder
Division of Intramural Research, National Institute of Allergy and Infectious Diseases
Publisher
The American Association of Immunologists
Subject
Immunology,Immunology and Allergy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献