Affiliation:
1. Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN
Abstract
Abstract
The structure of wild-type pentameric C-reactive protein (CRP) is stabilized by two calcium ions that are required for the binding of CRP to its ligand phosphocholine. CRP in its structurally altered pentameric conformations also binds to proteins that are denatured and aggregated by immobilization on microtiter plates; however, the identity of the ligand on immobilized proteins remains unknown. We tested the hypotheses that immobilization of proteins generated an amyloid-like structure and that amyloid-like structure was the ligand for structurally altered pentameric CRP. We found that the Abs to amyloid-β peptide 1–42 (Aβ) reacted with immobilized proteins, indicating that some immobilized proteins express an Aβ epitope. Accordingly, four different CRP mutants capable of binding to immobilized proteins were constructed, and their binding to fluid-phase Aβ was determined. All CRP mutants bound to fluid-phase Aβ, suggesting that Aβ is a ligand for structurally altered pentameric CRP. In addition, the interaction between CRP mutants and Aβ prevented the formation of Aβ fibrils. The growth of Aβ fibrils was also halted when CRP mutants were added to growing fibrils. Biochemical analyses of CRP mutants revealed altered topology of the Ca2+-binding site, suggesting a role of this region of CRP in binding to Aβ. Combined with previous reports that structurally altered pentameric CRP is generated in vivo, we conclude that CRP is a dual pattern recognition molecule and an antiamyloidogenic protein. These findings have implications for Alzheimer’s and other neurodegenerative diseases caused by amyloidosis and for the diseases caused by the deposition of otherwise fluid-phase proteins.
Funder
HHS | National Institutes of Health
Publisher
The American Association of Immunologists
Subject
Immunology,Immunology and Allergy
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献