The same epitope on CD22 of B lymphocytes mediates the adhesion of erythrocytes, T and B lymphocytes, neutrophils, and monocytes.

Author:

Engel P1,Nojima Y1,Rothstein D1,Zhou L J1,Wilson G L1,Kehrl J H1,Tedder T F1

Affiliation:

1. Division of Tumor Immunology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115-6084.

Abstract

Abstract CD22 is a B lineage-restricted member of the Ig superfamily that serves as an adhesion receptor expressed by mature B lymphocytes. In this study, the ability of different cell types to attach to COS cells transiently transfected with a full-length CD22 cDNA (COS-CD22) was examined to determine the cellular distribution of the ligand for CD22. T and B lymphocytes, monocytes, erythrocytes, and neutrophils formed specific rosettes with COS-CD22 cells at 4 degrees C. A panel of 33 new mAb directed against CD22 were developed to examine the regions of CD22 that mediate adhesion. Four of these mAb, HB22-7, -22, -23, and -33 (at 1 to 5 micrograms/ml) specifically blocked adhesion (75 to 95%) of all cell types to COS-CD22 cells. Each of these mAb cross-blocked each other's binding, suggesting that ligand binding occurs through a single region of CD22. These mAb also identify a region of CD22 distinct from those defined by previously described CD22 mAb. CD22-mediated adhesion of cell lines to COS-CD22 cells was independent of CD45RO and CDw75 expression, and it was not inhibited by mAb against known integrins. Although alpha-2,6-linked sialic acid expressed on the surface of COS cells did not serve as a ligand for CD22, the CD22 ligand may contain a critical sialic acid determinant, as neuraminidase treatment of all target cells eliminated CD22-mediated adhesion. CD22-mediated adhesion was Ca2+/Mg2+ independent, again suggesting that integrins were not involved. An inhibitory substance for CD22-mediated adhesion was found to be present in FCS and some ascites fluid. Analysis of CD22 mRNA and protein revealed that although multiple mRNA splice variants of CD22 mRNA can be detected, only a single protein isoform was detected on the cell surface. Therefore, although the identity of the CD22 ligands remains incompletely characterized, it is possible that a single major ligand is expressed by RBC and leukocytes, which binds to a single region of CD22.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3