Affiliation:
1. *Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115;
2. †Department of Molecular Immunology, Kyushu University, Fukuoka, Japan; and
3. ‡Department of Pediatrics and Medicine, Harvard Medical School, Boston, MA 02115
Abstract
Abstract
CD3, CD2, and CD28 are functionally distinct receptors on T lymphocytes. Engagement of any of these receptors induces the rapid tyrosine phosphorylation of a shared group of intracellular signaling proteins, including Vav, Cbl, p85 phosphoinositide 3-kinase, and the Src family kinases Lck and Fyn. Ligation of CD3 also induces the tyrosine phosphorylation of HS1, a 75-kDa hematopoietic cell-specific intracellular signaling protein of unknown function. We have examined changes in HS1 phosphorylation after differential stimulation of CD3, CD2, and CD28 to elucidate its role in T cells and to further delineate the signaling pathways recruited by these receptors. Unlike ligation of CD3, stimulation with anti-CD28 mAb or CHO cells expressing the CD28 ligands CD80 or CD86 did not lead to tyrosine phosphorylation of HS1 in Jurkat T cells. Additionally, no tyrosine phosphorylation of HS1 was induced by mitogenic pairs of anti-CD2 mAbs capable of activating the transcription factor NFAT (nuclear factor of activated T cells). Costimulation through CD28 and/or CD2 did not modulate the CD3-dependent phosphorylation of HS1. In vivo studies indicated that CD3-induced HS1 phosphorylation was dependent upon both the Src family tyrosine kinase Lck and the tyrosine phosphatase CD45, did not require MEK1 kinase activity, and was regulated by protein kinase C activation. Thus, although CD3, CD28, and CD2 activate many of the same signaling molecules, they differed in their capacity to induce the tyrosine phosphorylation of HS1. Furthermore, activation-dependent tyrosine phosphorylation of HS1 was not required for NFAT transcriptional activation.
Publisher
The American Association of Immunologists
Subject
Immunology,Immunology and Allergy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献