Direct Neurite-Mast Cell Communication In Vitro Occurs Via the Neuropeptide Substance P

Author:

Suzuki R.1,Furuno T.1,McKay D. M.2,Wolvers D.2,Teshima R.3,Nakanishi M.1,Bienenstock J.3

Affiliation:

1. *Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan;

2. ‡Intestinal Disease Research Program, McMaster University, Hamilton, Canada

3. †National Institute of Health Sciences, Tokyo, Japan; and

Abstract

AbstractCommunication between nerves and mast cells is a prototypic demonstration of neuroimmune interaction. However, whether mast cell activation occurs as a direct response to neuronal activation or requires an intermediary cell is unclear. Addressing this issue, we used an in vitro coculture approach comprising cultured murine superior cervical ganglia and rat leukemia basophilic cells (RBLs; possesses properties of mucosal-type mast cells). Following loading with the calcium fluorophore, Fluo-3, neurite-RBL units (separated by <50 nm) were examined by confocal laser scanning microscopy. Addition of bradykinin, or scorpion venom, dose-dependently elicited neurite activation (i.e., Ca2+ mobilization) and, after a lag period, RBL Ca2+ mobilization. Neither bradykinin nor scorpion venom had any direct effect on the RBLs in the absence of neurites. Addition of a neutralizing substance P Ab or a neurokinin (NK)-1 receptor antagonist, but not an NK-2 receptor antagonist, dose-dependently prevented the RBL activation that resulted as a consequence of neural activation by either bradykinin or scorpion venom. These data illustrate that nerve-mast cell cross-talk can occur in the absence of an intermediary transducing cell and that the neuropeptide substance P, operating via NK-1 receptors, is an important mediator of this communication. Our findings have implications for the neuroimmune signaling cascades that are likely to occur during airways inflammation, intestinal hypersensitivity, and other conditions in which mast cells feature.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interstitial Cystitis/Bladder Pain Syndrome: Role of Bladder Inflammation in Bladder Function;Current Bladder Dysfunction Reports;2023-10-25

2. The tumor-nerve circuit in breast cancer;Cancer and Metastasis Reviews;2023-03-31

3. The role of the neuronal microenvironment in sensory function and pain pathophysiology;Journal of Neurochemistry;2022-12-19

4. In vitro models for investigating itch;Frontiers in Molecular Neuroscience;2022-10-26

5. Pruritus, Prurigo and Lichen Simplex;Rook's Textbook of Dermatology, Ninth Edition;2016-10-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3