Antagonism of Immunostimulatory CpG-Oligodeoxynucleotides by Quinacrine, Chloroquine, and Structurally Related Compounds

Author:

Macfarlane Donald E.1,Manzel Lori1

Affiliation:

1. Department of Medicine, Veterans Affairs Medical Center and University of Iowa, Iowa City, IA 52242

Abstract

Abstract Phosphorothioate oligodeoxynucleotides containing CpG (CpG-ODN) activate immune responses. We report that quinacrine, chloroquine, and structurally related compounds completely inhibit the antiapoptotic effect of CpG-ODN on WEHI 231 murine B lymphoma cells and inhibit CpG-ODN-induced secretion of IL-6 by WEHI 231. They also inhibit IL-6 synthesis and thymidine uptake by human unfractionated PBMC induced by CpG-ODN. The compounds did not inhibit LPS-induced responses. Half-maximal inhibition required 10 nM quinacrine or 100 nM chloroquine. Inhibition was noncompetitive with respect to CpG-ODN. Quinine, quinidine, and primaquine were much less powerful. Quinacrine was effective even when added after the CpG-ODN. Near-toxic concentrations of ammonia plus bafilomycin A1 (used to inhibit vesicular acidification) did not reduce the efficacy of the quinacrine, but the effects of both quinacrine and chloroquine were enhanced by inhibition of the multidrug resistance efflux pump by verapamil. Agents that bind to DNA, including propidium iodide, Hoechst dye 33258, and coralyne chloride did not inhibit CpG-ODN effect, nor did 4-bromophenacyl bromide, an inhibitor of phospholipase A2. Examination of the structure-activity relationship of seventy 4-aminoquinoline and 9-aminoacridine analogues reveals that increased activity was conferred by bulky hydrophobic substituents on positions 2 and 6 of the quinoline nucleus. No correlation was found between published antimalarial activity and ability to block CpG-ODN-induced effects. These results are discussed in the light of the ability of quinacrine and chloroquine to induce remission of rheumatoid arthritis and lupus erythematosus.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3