Skin Homing (Cutaneous Lymphocyte-Associated Antigen-Positive) CD8+ T Cells Respond to Superantigen and Contribute to Eosinophilia and IgE Production in Atopic Dermatitis

Author:

Akdis Mübeccel1,Simon Hans-Uwe1,Weigl Lorenz2,Kreyden Oliver3,Blaser Kurt1,Akdis Cezmi A.1

Affiliation:

1. *Swiss Institute of Allergy and Asthma Research (SIAF), Davos, Switzerland;

2. †Clinic for Dermatology and Allergy, Davos, Switzerland; and

3. ‡Zürcher Höhenklinik Clavadel, Davos, Switzerland

Abstract

AbstractIn allergic inflammations of the skin, activation of CD4+ T cells was demonstrated to play an important role; however, a minor role for CD8+ T cells is implied. In the present study, we compared cutaneous lymphocyte-associated Ag (CLA)-expressing CD4+ and CD8+ subsets, which were isolated from peripheral blood and lesional skin biopsies in atopic dermatitis (AD) patients. We demonstrated that CD8+CLA+ T cells proliferate in response to superantigen and are as potent as CD4+CLA+ T cells in IgE induction and support of eosinophil survival. In atopic skin inflammation, the existence of high numbers of CD4+ and CD8+ T cells was demonstrated by immunohistochemistry and by culturing T cells from skin biopsies. In peripheral blood, both CD4+ and CD8+ subsets of CLA+CD45RO+ T cells were in an activated state in AD. The in vivo-activated CLA+ T cells of both subsets spontaneously released an IL-5- and IL-13-dominated Th2 type cytokine pattern. This was confirmed by intracytoplasmic cytokine staining immediately after isolation of the cells from peripheral blood. In consequence, both CD4+ and CD8+, CLA+ memory/effector T cells induced IgE production by B cells mainly by IL-13, and enhanced eosinophil survival in vitro by delaying eosinophil apoptosis, mainly by IL-5. These results indicate that in addition to the CD4+ subset, the CD8+CLA+ memory/effector T cells are capable of responding to superantigenic stimulation and play an important role in the pathogenesis of AD.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3