Combination of NKG2A and PD-1 Blockade Improves Radiotherapy Response in Radioresistant Tumors

Author:

Battaglia Nicholas G.1ORCID,Murphy Joseph D.1ORCID,Uccello Taylor P.1ORCID,Hughson Angela2,Gavras Nicholas W.2ORCID,Caldon Johnathan J.3ORCID,Gerber Scott A.12,Lord Edith M.1ORCID

Affiliation:

1. *Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY;

2. †Department of Surgery, University of Rochester Medical Center, Rochester, NY; and

3. ‡Department of Biology, University of Rochester, Rochester, NY

Abstract

Abstract Radiotherapy (RT) is commonly employed to treat solid tumors. Immune checkpoint blockade of programmed cell death protein 1 (PD-1) and CTLA-4 improves survival in RT patients, yet many fail to respond to combination therapy. Natural killer group 2 (NKG2) family receptors, particularly inhibitory NKG2A and activating NKG2D, have emerged as promising therapeutic targets to improve antitumor T cell responses; thus, we examined how these receptors and their ligands (Qa-1b and retinoic acid early inducible 1 [Rae-1], respectively) regulate the RT response in C57BL/6 mice bearing syngeneic B16F10 melanoma and MC38 colorectal adenocarcinoma tumors. RT (15 Gy) transiently reduced B16F10 tumor burden, whereas MC38 tumors exhibited durable response to RT. Intratumoral NK and CD8 T cells expressed NKG2A and NKG2D in both models, which was unaltered by RT. In vitro/in vivo RT increased tumor/stromal cell Qa-1b and Rae-1 expression in both models, especially B16F10 tumors, but IFN-γ stimulation induced both Qa-1b and Rae-1 only in B16F10 tumors. NKG2A/Qa-1b inhibition alone did not improve RT response in either model, but combined RT and NKG2A/PD-1 blockade improved survival in the B16F10 model. Depletion experiments indicate that the triple therapy efficacy is CD8 T cell–dependent with negligible NK cell contribution. RNA sequencing of CD8 T cells from triple therapy–treated B16F10 tumors showed increased proliferative capacity compared with RT and PD-1 blockade alone. Our work demonstrates that RT modulates NKG2A ligand expression, which inhibits RT-induced T cell responses in tumors that fail to respond to combined RT and PD-1 blockade. These results provide a rationale for combining NKG2A blockade with immune checkpoint blockade therapies and RT to improve clinical response.

Funder

HHS | NIH | National Cancer Institute

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3