High-affinity oligonucleotide ligands to human IgE inhibit binding to Fc epsilon receptor I.

Author:

Wiegand T W1,Williams P B1,Dreskin S C1,Jouvin M H1,Kinet J P1,Tasset D1

Affiliation:

1. NeXstar Pharmaceuticals, Boulder, CO 80301, USA.

Abstract

Abstract Using the systematic evolution of ligands by exponential enrichment (SELEX) method, we have identified oligonucleotides that bind to human IgE with high affinities and high specificity. These ligands were isolated from three pools of oligonucleotides, each representing 10(15) molecules: two pools contained 2'-NH2 pyrimidine-modified RNA with either 40 or 60 randomized sequence positions, and the third pool contained ssDNA with 40 randomized sequence positions. Based on sequence and structure similarities, these oligonucleotide IgE ligands were grouped into three families: 2'-NH2 RNA group A ligands are represented by the 35-nucleotide truncate IGEL1.2 (Kd = 30 nM); 2'-NH2 RNA group B ligands by the 25-nucleotide truncate IGEL2.2 (Kd = 35 nM); and the ssDNA group ligands by the 37-nucleotide truncate DI 7.4 (Kd = 10nM). Secondary structure analysis suggests G quartets for the 2'-NH2 RNA ligands, whereas the ssDNA ligands appear to form stem-loop structures. Using rat basophilic leukemia cells transfected with the human high-affinity IgE receptor Fc epsilon RI, we demonstrate that ligands IGEL1.2 and D17.4 competitively inhibit the interaction of human IgE with Fc1 epsilon RI. Furthermore, this inhibition is sufficient to dose-dependently block IgE-mediated serotonin release from cells triggered with IgE-specific Ag or anti-IgE Abs. Therefore, these oligonucleotide ligands represent a novel class of IgE inhibitors that may prove useful in the fight against allergic diseases.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3