B Cell Responses to a Peptide Epitope. VII. Antigen-Dependent Modulation of the Germinal Center Reaction

Author:

Agarwal Anshu1,Nayak Bishnu P.1,Rao Kanury V. S.1

Affiliation:

1. Immunology Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India

Abstract

AbstractGerminal center responses to two analogous peptides, PS1CT3 and G32CT3, that differ in sequence only at one position within the B cell epitopic region were examined. In comparison with peptide PS1CT3, peptide G32CT3 elicited a poor germinal center response. By demonstrating equal facility of immune complexes with IgM and IgG Ab isotypes to seed germinal centers, we excluded differences in isotype profiles of early primary anti-PS1CT3 and anti-G32CT3 Ig as the probable cause. Quantitative differences in germinal center responses to the two peptides were also not due to either qualitative/quantitative differences in T cell priming or variation in the frequency of the early Ag-activated B cells induced. Rather, they resulted from qualitative differences in the nature of B cells primed. Analysis of early primary anti-PS1CT3 and anti-G32CT3 IgMs revealed that the latter population was of a distinctly lower affinity, implying the existence of an Ag affinity threshold that restricts germinal center recruitment of G32CT3-specific B cells. The impediment in anti-G32CT3 germinal center initiation could be overcome by making available an excess of Ag-activated Th cells at the time of immunization. This resulted in the appearance of a higher affinity population of G32CT3-specific B cells that, presumably, are now capable of seeding germinal centers. These data suggest that the strength of a germinal center reaction generated is Ag dependent. At least one regulatory parameter represents the quality of B cells that are initially primed.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3