Host Genetic Determinants of Vaccine-Induced Eosinophilia During Respiratory Syncytial Virus Infection

Author:

Hussell Tracy1,Georgiou Andrew1,Sparer Tim E.1,Matthews Stephen1,Pala Pietro1,Openshaw Peter J. M.1

Affiliation:

1. Respiratory Medicine, National Heart and Lung Institute, Imperial College of Science, Technology and Medicine, London, United Kingdom

Abstract

Abstract In BALB/c mice, sensitization with the attachment protein (G) of respiratory syncytial virus (RSV) leads to CD4+ T cell-mediated lung eosinophilia during subsequent challenge with RSV. To determine the host genetic influences on this model of lung eosinophilia, we tested 15 different inbred mouse strains. Eosinophilia developed in all H-2d (BALB/c, DBA/2n, and B10.D2), but not in H-2k (CBA/Ca, CBA/J, C3H, BALB.K, or B10.BR) mouse strains. Among H-2b mice, 129 and BALB.B developed eosinophilia, whereas C57BL/6 and C57BL/10 did not. Testing first generation crosses between sensitive and resistant strains showed that eosinophilia developed in all H-2dxk (n = 5), irrespective of background genes, but not in H-2dxb (n = 2) mice. In vivo depletion of CD8+ T cells or IFN-γ rendered C57BL/6, but not BALB.K mice, susceptible to eosinophilia. Analysis of B10 recombinant mice showed that the Dd allele (in B10.A(5R) mice) prevented CD8+ T cell accumulation in the lung, resulting in intense lung eosinophilia. However, the Db allele (in B10.A(2R) and B10.A(4R) mice) supported CD8+ T cell expansion and prevented eosinophilia. Intracellular cytokine staining showed that lung eosinophilia correlated with reduced IFN-γ and increased IL-10 expression in lung T cells. These results are compatible with the unifying model that Th2 cells mediate the disease but can be inhibited by CD8+ T cells secreting IFN-γ. Our findings have important implications for the development of protective, nonpathogenic vaccines for RSV disease.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3