Somatic Diversification of Rearranged Antibody Gene Segments by Intra- and Interchromosomal Templated Mutagenesis

Author:

Dale Gordon A.1ORCID,Wilkins Daniel J.1ORCID,Rowley Jordan2ORCID,Scharer Christopher D.3ORCID,Tipton Christopher M.4ORCID,Hom Jennifer4,Boss Jeremy M.3ORCID,Corces Victor2ORCID,Sanz Ignacio4,Jacob Joshy1ORCID

Affiliation:

1. *Emory Vaccine Center, Yerkes National Primate Center, Emory University, Atlanta, GA;

2. †Department of Biology, Emory University, Atlanta, GA;

3. ‡Emory University School of Medicine, Emory University, Atlanta, GA; and

4. §Lowance Center for Human Immunology, Department of Medicine, Emory University, Atlanta, GA

Abstract

Abstract The ability of the humoral immune system to generate Abs capable of specifically binding a myriad of Ags is critically dependent on the somatic hypermutation program. This program induces both templated mutations (i.e., gene conversion) and untemplated mutations. In humans, somatic hypermutation is widely believed to result in untemplated point mutations. In this study, we demonstrate detection of large-scale templated events that occur in human memory B cells and circulating plasmablasts. We find that such mutations are templated intrachromosomally from IGHV genes and interchromosomally from IGHV pseudogenes as well as other homologous regions unrelated to IGHV genes. These same donor regions are used in multiple individuals, and they predominantly originate from chromosomes 14, 15, and 16. In addition, we find that exogenous sequences placed at the IgH locus, such as LAIR1, undergo templated mutagenesis and that homology appears to be the major determinant for donor choice. Furthermore, we find that donor tracts originate from areas in proximity with open chromatin, which are transcriptionally active, and are found in spatial proximity with the IgH locus during the germinal center reaction. These donor sequences are inserted into the Ig gene segment in association with overlapping activation-induced cytidine deaminase hotspots. Taken together, these studies suggest that diversity generated during the germinal center response is driven by untemplated point mutations as well as templated mutagenesis using local and distant regions of the genome.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3