Revealing the In Vivo Behavior of CD4+ T Cells Specific for an Antigen Expressed inEscherichia coli

Author:

Chen Zong-ming1,Jenkins Marc K.1

Affiliation:

1. Department of Microbiology and Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455

Abstract

AbstractThe clonal expansion and anatomic location of microbe-specific CD4+ Th cells was studied by tracking the fate of adoptively transferred DO11.10 TCR transgenic T cells specific for OVA peptide 323–339/I-Ad in BALB/c mice infected s.c. with Escherichia coli expressing a MalE-OVA fusion protein. After infection, the DO11.10 T cells accumulated in the T cell-rich paracortical regions of the draining lymph nodes, proliferated there for several days, and then moved into the B cell-rich follicles before they slowly disappeared from the lymph nodes. These changes occurred despite the fact that viable organisms were never found in the lymph nodes. The DO11.10 T cells also accumulated in the s.c. infection site, but about 1 day later than in the draining lymph nodes. Injection of purified MalE-OVA fusion protein alone induced a transient accumulation of DO11.10 T cells in the paracortical regions, but these T cells never entered follicles and the mice did not produce anti-OVA antibodies. The DO11.10 T cells that survived in animals injected with MalE-OVA alone were hyporesponsive to in vitro Ag restimulation and did not produce IL-2 and IFN-γ, whereas DO11.10 T cells from mice infected with MalE-OVA-expressing bacteria produced both lymphokines. These results suggest that Ag-specific T cells are first activated in secondary lymphoid organs following primary bacterial infection and then migrate to the infection site. Furthermore, productive activation of the T cells during the primary response is dependent on bacterial components other than the Ag itself.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3