E3 Ubiquitin Ligase Riplet Is Expressed in T Cells and Suppresses T Cell–Mediated Antitumor Immune Responses

Author:

Iwamoto Asuka12ORCID,Tsukamoto Hirotake3,Nakayama Hideki2ORCID,Oshiumi Hiroyuki1

Affiliation:

1. *Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan;

2. †Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; and

3. ‡Division of Clinical Immunology and Cancer Immunotherapy, Center for Cancer Immunotherapy and Immunobiology, Kyoto University, Kyoto, Japan

Abstract

Abstract The E3 ubiquitin ligase Riplet mediates retinoic acid–inducible gene-I polyubiquitination and is essential for viral-induced expression of type I IFNs in dendritic cells and macrophages. The function of Riplet in innate immunity has been well demonstrated; however, its role in adaptive immunity during the antitumor immune response is unclear. In this study, we examined the role of Riplet in the T cell–mediated antitumor immune response. Riplet was expressed in T cells and upregulated in CD8+ T cells in response to TCR-mediated stimulation. Furthermore, PR domain containing 1, eomesodermin, and killer cell lectin-like receptor G1 expression was increased in effector CD8+ T cells by Riplet knockout in vitro, which suggests that Riplet is involved in the effector function of CD8+ T cells. Our results indicated that Riplet deficiency augmented the antitumor response of MO4 (OVA-expressing melanoma)–bearing mice treated with OVA peptide-pulsed dendritic cells. Moreover, both CD4+ and CD8+ T cells played important roles in Riplet-mediated augmentation of the antitumor immune response. In tumor-draining lymph nodes, the Th1 response was promoted, and the induction of OVA-specific CD8+ T cells and IFN-γ production were enhanced by Riplet deficiency. Furthermore, the IFN-γ response and OVA-specific cytotoxicity of CD8+ T cells in tumor tissue were augmented by Riplet deficiency. The expression of Cxcl9fluorescence-minus-one and Cxcl10 mRNA was also enhanced in the tumor microenvironment by Riplet knockout, consistent with the augmented recruitment of CTLs. Overall, we clarified a function of Riplet in T cells, which is to suppress the antitumor immune response through modulating Th1 and CTLs.

Funder

MEXT | Japan Society for the Promotion of Science

Japan Agency for Medical Research and Development

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

Reference43 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3