Heat Shock Protein 90’s Mechanistic Role in Contact Hypersensitivity

Author:

Kim Seong-Min1ORCID,Studnitzer Bradley1,Esser-Kahn Aaron1ORCID

Affiliation:

1. Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL

Abstract

Abstract Despite the known dangers of contact allergens and their long-lasting use as models in immunology, their molecular mode of action largely remains unknown. In this study, we report that a contact allergen, 1-chloro-2,4-dinitrobenzene (DNCB), elicits contact hypersensitivity through binding the protein we identify. Starting from an unbiased sampling of proteomics, we found nine candidate proteins with unique DNCB-modified peptide fragments. More than half of these fragments belonged to heat shock protein 90 (HSP90), a common stress-response protein and a damage-associated molecular pattern, and showed the highest probability of incidence. Inhibition and short hairpin RNA knockdown of HSP90 in human monocyte cell line THP-1 suppressed the potency of DNCB by >80%. Next, we successfully reduced DNCB-induced contact hypersensitivity in HSP90-knockout mice, which confirmed our findings. Finally, we hypothesized that DNCB-modified HSP90 activates the immune cells through HSP90’s receptor, CD91. Pretreatment of CD91 in THP-1 cell lines and BALB/c mice attenuated the potency of DNCB, consistent with the result of HSP90-knockout mice. Altogether, our data show that DNCB-HSP90 binding plays a role in mediating DNCB-induced contact hypersensitivity, and the activation of CD91 by DNCB-modified HSP90 proteins could mediate this process.

Funder

Pew Charitable Trusts

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

Reference56 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fragile Effects of Climatic Variation on Goat Protein and its Products: A Review;Current Research in Nutrition and Food Science Journal;2022-12-20

2. The Heat Shock Protein 90 (HSP90) Is Required for the IL-33-Induced Cytokine Production in Mast Cells (MCs);International Journal of Molecular Sciences;2022-09-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3