Redox Regulation of Caspase-3(-like) Protease Activity: Regulatory Roles of Thioredoxin and Cytochromec

Author:

Ueda Shugo12,Nakamura Hajime12,Masutani Hiroshi1,Sasada Tetsuro1,Yonehara Shin3,Takabayashi Arimichi2,Yamaoka Yoshio2,Yodoi Junji1

Affiliation:

1. *Biological Responses and

2. ‡Department of Gastroenterological Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan

3. †Viral Oncology, Institute for Virus Research, and

Abstract

AbstractOxidative stress induces a variety of cellular responses, including apoptosis, and caspase family proteases are known to be involved in apoptosis. Caspase-3(-like) protease activity was examined in Jurkat T cells to investigate the mechanism of apoptosis induced by a thioloxidant, diamide. Caspase-3 was activated when cells were cultured with 200 μM diamide that induced apoptosis, whereas no caspase-3 activation was detected with 500 μM diamide that induced necrosis. When apoptosis was induced in cells with exposure to 200 μM diamide, the intracellular thioredoxin (TRX) levels were maintained and the intracellular generation of reactive oxygen intermediates was marginal. The cytosolic fractions of cytochrome c were increased earlier than the activation of caspase-3. In contrast, when cells were exposed to 500 μM diamide, intracellular reactive oxygen intermediate generation was increased and processing of caspase-3 was not detected despite cytochrome c release, resulting in necrosis. Caspase-3 activity in cell lysate precultured with anti-Fas Ab was suppressed dose dependently by diamide and restored by thiol-reducing agents, DTT or TRX. When cells were precultured with 5 mM of buthionine sulfoximine, an inhibitor of glutathione synthesis, intracellular TRX levels were maintained, and as low as 20 μM diamide could induce apoptosis associated with the increase of cytosolic cytochrome c and the activation of caspase-3. These results indicate that the activation of caspase-3 in diamide-induced apoptosis is mediated, at least partly, by cytochrome c release from mitochondria, and the cellular reducing environment maintained by TRX, as well as glutathione, is required for caspase-3 activity to induce apoptosis.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3