Direct Effects on Antigen-Presenting Cells and T Lymphocytes Explain the Adjuvanticity of a Nontoxic Cholera Toxin Mutant

Author:

Yamamoto Masafumi123,Kiyono Hiroshi23,Yamamoto Shingo3,Batanero Eva3,Kweon Mi-Na2,Otake Shigeo1,Azuma Miyuki4,Takeda Yoshifumi5,McGhee Jerry R.3

Affiliation:

1. *Department of Clinical Pathology, Nihon University School of Dentistry, Matsudo, Japan;

2. †Department of Mucosal Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan;

3. ‡Departments of Oral Biology and Microbiology, Immunobiology Vaccine Center, University of Alabama Medical Center, Birmingham, AL 35294;

4. §Department of Immunology, National Children’s Medical Research Center, Tokyo, Japan; and

5. ¶Research Institute, International Medical Center of Japan, Tokyo, Japan

Abstract

AbstractThe present study has elucidated two distinct mechanisms that may explain how a mutant of cholera toxin (mCT), E112K, retains adjuvant effects though it lacks ADP-ribosyltransferase activity and associated toxicity. In the first mechanism, we show that mCT E112K, like native cholera toxin (nCT), enhances B7-2 expression, but, to some extent, also enhances B7-1 on Peyer’s patch B cells and macrophages. Cocultivation of CD4+ T cells with E112K- or nCT-treated B cells and macrophages in the presence of anti-CD3 stimulation resulted in the induction of T cell-proliferative responses. Further, the responses were blocked by mAbs to B7-1 and/or B7-2; however, the effect of anti-B7-1 was minimal. In the second mechanism, addition of mCT E112K or nCT to anti-CD3 mAb-stimulated Peyer’s patch CD4+ T cells inhibited proliferative responses, while recombinant CT-B subunit (rCT-B) did not. Analysis of cytokine responses showed that both mCT E112K and nCT preferentially inhibited IFN-γ production. Interestingly, however, nCT, but not mCT E112K, induced apoptosis in CD4+ T cells activated via the TCR-CD3 complex. These results indicate that CT uses at least two pathways for inhibition of Th1 responses and that, while nCT induces cAMP accumulation that in turn leads to apoptosis in Th1-type cells, mCT E112K, which lacks ADP-ribosyltransferase activity, inhibits IFN-γ synthesis by a separate mechanism. Thus, mCT E112K, like nCT, induces adjuvant responses via up-regulation of mainly B7-2 on APCs and through preferential inhibition of Th1-type CD4+ T cell responses in the absence of ADP-ribosyltransferase activity.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3